IEEE TREANSACTIONS ON COMPUTERS, VOL. C-1%, NO. 11, NOVEMBER 1970

LM

Scroll Editing: An On-Line Algorithm for
Manipuiating Long Character Strings

MARY ALLEN WILKES

Abstract—An algorithm that runs on a 2048-word LNG provides
afficient on-line editing of character strings virtually unlimited in
length. Fixed-address LINC tape holds the character saquence in the
manner of a scroll. Edited characters are spliced directly in or out of
the scroll as it moves across a display scope under the viewar's control,
A B12-character “'playground” created at the splice point provides
sufficient ease to permit changing the scroll contents dynamically,
and thereby simplifies several problems commonly associated with
on-ling aditing. Compensatory insarting and deleting are practical,
Inserted characters require no special identification and scroll main-
tenance is automatic. Editing commands for simple editorial functions
and editorial text identifiars are eliminated, and the number of char-
acters that can be inserted anywhere is limited only by the total
length of the scroll. Line numbers, if provided, are resequanced auto-
matically as the scroll contents change. As little as 2 peErcent af the
scroll is manipulated in the memory at a time. Despite the relativaly
slow transfer characteristics of the tape, performance is satisfactory
ona LINCG for scrolls up to 23 040 characters and is not strongly depen-
dent an the size of the playground.

Index Terms—La&PG, LING, on-line editing, scope editing. scroll
editing, tape aditing.

INTRODUCTION

‘“H\ code on-line is considered by some to be the heart of a
rood on-line system™ [1]. Selecting an algorithm to
govern an on-line editor involves recognizing that editing
consists first of identifying an editorial point of interest in a
collection of characters. It then entails only two things:
adding characters andfor removing characters al that
unique point. An algorithm that provides a simple, direct.
and efficient way to handle these elementary activities can
be used to construct any editorial function whatever. This
fact, although frequently acknowledged [2], [3]. has been
enthusiastically obscured in many computer environments,
Although there are several functional descriptions of on-
line editors [2]-[11], their data-handling algorithms tend
to be infrequently documented. The focus of any algorithm
is its character-insertion mechanism. Editors that manipu-
late characiers in literal sirings most frequently use a “‘de-
ferred storage” technigque, which saves information being
inserted in a temporary buffer, and defers storing it in the
text itself until some condition has been satisfied. The dis-
advantage ol handling the data twice has other implications
that can appear, for example, in the form of special editing
commands required of the user or as a limitation on the size

S('HW!‘\R'IY. has remarked that “the process of editing

Manuscript received August 26, 1969 revised March 2. 1970. This
work was supported by the [Mvision of Rescarch Facilities and Resources
of the MNatienal Instituies of Health under Grant FR-218 through Washing
ton University. St Louis, Mo,

The author s with the Computer Systems Laboratory, Washinglon
Linrversity, St. Louis, Mo

of the buffer. Extending the buffer to a peripheral device re-
moves this limitation, but the task of eventually inserting
the material into the text may be ageravated.

Semi-list structures, popularly used with disks [2], [7]
[11], avoid the insertion problem at the expense of text
fragmentation and increasing overhead, without eliminai-
ing the problem of overflow onto the peripheral device.
Except for a few applications [2], [7], most find no inkerent
advantage in the segmented text and generally resort to re-
sequencing or even translating the list structure into a
literal siring.

The scroll-editing algorithm uses what might be called a
“direct storage” technique in which the data are handled
once as they move from their input source into the texi
string, which itselt 15 directly continuous between the core
memory and a randomly addressable peripheral device.
Motivated by experience with the inefficiencies of the de-
ferred storage technigue [12], the algorithm described here
has, since its initial nse in 1966 [13]. been found far superior,

A machine such as the Line [14] is excellently suited to
text manipulation, despite its 2048-word memory. Display
scope and kevboard are standard items, as 15 a two-unit
magnetic tape transport whose pocket-sized premarked
tapes are randomly addressable by block number in a man-
ner similar to the TX- 2[15] or the ATLAS computer [16]. The
Line searches for a requested block by moving the tape in
either direction.

Text, or manuscript, is held on a LiNe tape that is treated
as a scroll wound onto the two tape hubs. Motion of the
scroll, to expose different parts of the manuscript on the
scope, can be directed from the kevboard. Asa reading tech-
nique, this method of text presentation is a logical one for
scope editors,

The concept of scroll editing, however. means that the
scroll itselt, theoretically unlimited in length, can be edited
anywhere and to any extent by writing directly on the scroll
or by erasing information directly from the scroll at the
unique points of interest. The scroll remains homogencous,
although its contents, and probakly its length, change dy-
namically with every editorial correction.

FUNCTIONAL IMPLICATIONS
Scroll editing is an integral part of the on-ling LINC sys-
tem Lape [17] Of the editors cited. Laps is functionally
closest to Tolliver’s TveEDiT, and was similarly influenced by
a desire to let the user’s interaction with the displayed text
be governed by the explicit context-dependent nature of his

{H114)

environment. 1t is an environment in which highly struc-
tured commands can be, and more often should be, elim-
inated in favor of the user’s natural response to the visually
obvious. The philosophy is ably expounded by McCarthy
etal [11].

It is not the purpose here to argue for a specific functional
description. The essentials of the algorithm are the same
regardiess of what features are built out of them. The editing
functions that have been tried include single character, line,
and multiple-line manipulations for insertions, deletions,
or combinations, and are all straightforward both to imple-
ment and to use, LaPs commands that operate on manu-
scripts are streamlined. A single ADD MANUSCRIPT com-
mand, for example, is used to move a manuseript onto an
empty scroll, append a filed manuseript to the seroll manu-
script, or insert one manuscript in the middle of another.
Its counterpart, SAVE MANUSCRIPT, is used for the comple-
mentary functions. Manuscripts can be broken into any
pieces for rearranging, filing, printing, ete. [18].

Scroll Motion

A Laps manuscript is any collection of character codes
generated from any source. A “current manuscript™ 15 held
in consecutive blocks of the seroll area on the tape. A block
is simply the transfer unit between tape and memory the
characters carry smoothly across block boundaries, pro-
ducing a continuous string,

The scroll is moved, either by the user or automatically
under program control, between editorial points of interest,
i.e., from one “‘requested scroll position™ to another. A re-
quested scroll position can be any conveniently definable
position between two characters. In Fig. 1 the scroll position
is between the last character of line 340 and the first char-
acter of the undisplayed line 341. One version permits
positioning by matched character string, line number. or in
directional increments of single characters, lines, or frames.
The mechanism itself is less important than the ahility to
move the scroll easily and directly to other positions, In
most cases forward and backward pushbuttons would be
more nearly ideal.

Specific Inplications

Some features characterize all editors. The way LAPS
handles the following fundamental situations is either di-
rectly implied by the editing algorithm or greatly simplified
by il

1} At any requested scroll position, keyboard input can
be typed directly to the scroll. No iNserRT function or
function bounds are needed ; the user does not “tell™
the machine that he is editing. Starting with Fig. 1. for
example, added information automatically becomes
line 341, then 342, etc.

2) At any seroll position any amount of material can be
edited in or out without interruption requiring user
action.

IEEE TRAMSACTIONS ON COMPUTERS, NOVEMBER 1597

The display.

Fig. 1.

3) The seroll can be moved in either direction and edited
in any order.

4) Moving the text and identifying the editorial point of
interest can be synonymous.

5) The text can have any format; if it is line-oriented,
lines can be of any length.

) Line or sequence numbers, if provided, are auto-
matically renumbered. The line numbers are not part
of the manuseript: in Fig. 1 if the user adds two lines
and then moves the scroll forward, the former line
341 will have the number 343,

7) The total storage required is just that to hold the
characters ; specifically, copies of the text are nol re-
quired,

%) The core memory required is minimal ; the LAPs scroll
uses 4 maximum of 768 words.

9) The simple manuscript structure permits manuscripts
to be used, generated, and edited easily by programs
other than the system editor.

10) Scroll “maintenance™ is automatic: the user is not
responsible for, e.g.. “packing,” or moving the scroll
Lo special positions (typically the end or the begin-
ningj.

THE ALGORITHM

The editing algorithm was first proposed by Stucki and
Ornstein in discussions with the author during March 1965,
Despite subsequent refinement, the playground concept and
the organization of LINC tape and memory to accommodate
it are largely their creation.

The algorithm is appropriate for any randomly address-
able storage device such as a disk, a premarked magnetic
tape, or, if necessary, core memory. Very little core memory
is required, however, and the size of the Linc memory, 2048
12-bit words, greatly motivated articulation of the al-
gorithm. The total manuscript size and manuscript line
length are, however, virtually unlimited.

The Playground

The Stucki—Ornstein algorithm is based on the concept of
a playground, created by separating the character string in
the memory at the requested scroll position to provide a
free space for additional characters coming from the key-
board. Characters. picked up or discarded in the play-
ground, are “spliced” in or out of the scroll as it moves

WILKES: SCROLL EDITIMNG

through the memory from one tape reel to the other. The
plaveround. once created. continues to “track™ the chang-
ing scroll position as the seroll moves.

Creating the Playground

Fig. 2 shows a manuscript on the tape in blocks 1-7 of the
scroll area. BS, WS, and CS are 256-word memory sections
corresponding in size to scroll blocks. If block 4 contains a
requested position, say line 340, block 4 is read into the
memory and the string broken between lines 340 and 341.
In Fig. 2. X is at the end of line 340, and ¥ at the beginning
of line 341. Block 3, read into the buffer section BS, pro-
vides continuity for the display, which is as in Fig. 1.

The original string is now treated as two separate strings.
The first, or working string, is contained in blocks 1, 2, 3, and
the working section, WS. up to point X. The second, or
conitinuation string, begins at point ¥ in the continuation
section C8, followed by blocks 5. 6. and 7.

The shaded area in Fig. 2 represents the playvground, an
expansion into the memory of the scroll area on the tape.
The playground happens to be the same siz¢ as a memory
section or scroll block, but this is not required. It could be
larger or smaller, its purpose being only to create “some”
extra space at the editorial point of interest.

Positionting the Scrafl

If starting with Fig, 2 a new scroll position is requested,
say, line 330, characters are transferred from the working
section into the continuation section (Fig. 3), until the
points X and ¥ are between lines 330 and 331, The play-
ground has simply shifted left. Locating forward is identical,
except that the playground is shifted to the right.

Adding and Deleting Characters

New characters being added to the scroll are stored in the
playground starting at point X as they arrive. X and the dis-
play move into the playground the appropriate amount
keeping track of the end of the working string. Adding in-
formation shrinks the playground (Fig. 4). Other than that,
there is nothing special about the new characters; the work-
ing string is still continuous from block 1 to point X.

Likewise, if information is deleted, X moves the appropri-
ate amount to the left, shortening the working string. De-
leting increases the size of the playground.

One obvious advantage of the scheme is that adding and
deleting are compensatory. When initially created, the
Lar s playground can accommodate 312 characters.! The
total number of characters that can be added before a new
playground must be created is therefore 512 plus the number
deleted.

In either case, since the changes are made exactly where
they belong in the string, no further manipulation is re-
quired by either the user or LaP6 in order lo incorporate

! Two characler codes are stored per word.

(LT
MANUSCRIPT
E
; .
I
| 1 2 3 Boan| & @ | 7 { SCROLL
g A | S

7

/ i /ﬂv'é; =

/ MEMORY

Creating the playground.

W5
/_’ Disploy

Window

Fig. 7.

MANUSCRIFT
- T = i2al]

L] “' r: SCROLL

T
1
:4b 5
|

3 WEMORT
Lo e .
BS5
‘[Dizploy
Window
Fig. 3. Moving backward.
I | 2 SCROLL
e
3 Qo o Sab s EETT e MEMDRY
STAFES 5
&
e
BS Ws
Digplay
Window
Fig. 4. Adding new information, moving Torward, and splicing,

them. The relationship of the working string to the con-
tinuation string remains well defined, and there is no need
to distinguish an “edited” from an “unedited” manuscript.

The algorithm as presented in Fig. 5 shows all manipula-
tions at the simplest single character level. Without con-
sidering the memory/scroll interactions they can be sum-
marized as follows,

1) Moving the scroll in either direction shifts the play-
ground left or right, moving X and Yin parallel.

2} Adding or deleting information causes the playground
to shrink or expand, since only X is moved. Point ¥
and the continuation string are temporarily ignored,

In what follows, combinations of these two activities are
considered in connection with line numbers, section bound-
ary conditions, and the full playground situation. Further
illustrations are given in [13] and [19].

1012
INITIALIZE
b_("J
ADD finlt S,
BRAL {THNTERPRE L
INPLT
bl 2z LOCATE
EEE
< WS EMPTY >
|: P £ T SAVE CURRENT
AT ENG OF
gy é SCAOLL POSITION
(A REQUEST EMD
: OF MANUSCRIPT
WSyl CONTENWTS OF e
% LGCATION x <_LOCATE >
N ws;
L]
i Ly REQLIEST SAVED
BLK . CONTENTS CF SrROLL POSITION
SCROLL BLOCK) ek
< LOCATE >
Fig. 5.
Splicing

Fig. 4 follows Fig. 2. The added information NOT ON
TAPE is spliced into the working string by moving forward
an the scroll. The size of the remaining playground is, of
course, the same before and after the splicing operation,
Thus, although the playground may eventually be filled. the
added characters can be distributed throughout the scroll.
It also follows that changes made to one part of the seroll
can be compensated by changes made to a different part.
Editorial functions. for example. that involve rearranging
large sections of the text are readily accommodated.

Numbering the Lines

Since the algorithm does not require that the lines have
fixed identifiers. line numbers can be provided and renum-
bered automatically by using a single counter to monitor a
current line number. The counter is decremented whenever
a line terminator is removed from the working string,
whether from deleting or locating, and incremented when-
ever a line terminator i added (o the working string. Thus,
as character input is interspersed with forward locating,
“pld” lines are automatically renumbered as they are
brought from the continuation string onto the scope.

Section Bowndaries

The memory/scroll interaction required when either W5
or S is full or empty can be determined from Fig. 5. W and
C on the chart represent scroll block numbers associated
with the working and continuation strings, respectively, W
is always the number of the scroll block in which WS will
next be written if it fills up. C, initially set equal to W, is
established every time a playground is created.

IEEE TRAMNSACTIONS ON COMPUTERS, NOVEMBER 1970

e
|Loc ATE]

il

[SAVE REGUESTED POSITICH |

iy FORWARD e, m:,_m BACKWARD
" SCROLL

SCROLL AT

(:F_!I—_TI_IRE

SCROLL A

REQUESTED

POSITICN ./
i)

Simplified flow diagram.

WS can be filled (XY= T) or emptied { X' =0) by combina-
tions of editing and locating. CS, however, is affected only
by locating. The scroll block pointers W and C therefore
change independently. For the situations of Figs, 24, W
and C both equal 4. Thus if WS fills up following Fig. 4, it
will be written in block 4 (Fig. 6). If it empties, block 3 will
be read into WS and block 2 into BS. The procedure when
CS fills up { ¥=0) or empties (¥= T} is similar.

When a transfer is made in or out of either WS or CS, the
string pointer X or ¥ is reset to the opposite boundary of
the section to keep the string continuous between tape and
memory. In Fig. 6 the working string now continues from
block 4 to X in WS,

Since the playground always begins at X, the shaded area
in Fig. 6 represents only the size of the remaining play-
ground. (Permitting X to continue into CS requires for some
manipulations that CS and W5 switch roles, which 1s pro-
grammatically awkward.) Also, since the memory contains
the same amound of information NOT O TAPE In Fig. 6 that
was entered as “new” information in Fig. 4, the size of the
playground is still the same.

The information not on the scroll is therefore not neces-
sarily inserted information. In Fig. 6, for example, it is the
remainder of the 4¢ segment of the original contents of
block 4.

When the transfer is made using a LiNC tape. the display is
interrupted for about 0.1 second. Since block 4 was the last
block read (Fig. 2), the tape is properly positioned and there
15 little travel time loss.

Deleting can cause the two strings 1o become widely
separated. Fig. 7 follows Fig. 2 by first deleting until the
working string is continuous only between block 1 and WS,

WILKES: SCROLL EDITIMG

SCROLL

MEMORY

SCROLL

MEMORY

Fig 7.

Strings separated by deleting and playground shifted.

and then locating backward by an amount 2b, Smce the
deleted characters are simply characters that need not be
rewritten, the additional playeround created is represented
by the shaded area on the scroll in Fig. 7. The size of the
playvground is, of course, the size of this shaded area plus 512
ifrom Fig 2).

The backward locating operation in Fig. 7 fills C5. Asitis
written in block 4, segment 2b is moved from block 2 to
block 4. and the additional playground is shifted left into
blocks 2 and 3. The shift is identical to the playground shift
in Fig. 3, but it is done on the scroll.

Joining the Strings

Moving the scroll forward to the end of the manuscript is
all that is required to join the two strings. When the last
characier is moved from ¥ to X, the working string is the
entire string and the playground is “pushed off™” the end.

The Lare user is never required to join the strings. He
states system commands at any time, regardless of the posi-
tion of the scroll or the extent of editing, If the sirings need
to be joined (e.g.. to file the current manuscript), LaPo joins
them automatically, This avoids unnecessary tape handling
since under program control the decision to join the strings
can be based only on the extent of editing, and not influ-
enced by the scroll position.

Playgrowund Full

The playground is full when 512 characters in the mem-
ory are NOT oM TAPE, and W equals C. At this point, infor-
mation about the current scroll position 1s saved and the
two strings are joined automatically as described above, A
new playground is then created at the former seroll position.
Since the result on the scope and in the memory is the same
before and after this operation, there is no change from the
viewer's slandpoint.

1013

It must be emphasized that a full playground in no way
represents an awkward situation or interferes with the sys-
tem operation. The procedure for handling it is identical
to executing two locate requests, except that il is aulomatic.
The programming overhead incurred is therefore minor; in
the LAP& case it is about 30 machine instructions.

EFFICIENCY

The standard configuration of Lares has a 45-block scroll
that accommodates 23 040 characters. The size has been
found more than adequate for most Linc applications, al-
though a few have used scrolls as long as 270 blocks. Al-
though the algorithm is unrelated to scroll size, its efficiency,
of course, 1s not.

Moving the scroll through the memory requires a little
less than 1 second per tape block. This includes reading the
block into the continuation section, writing it back ento the
seroll from the working section, and checking the transfers.
The wrITE and cHECK operations, for which the LiNe has to
reverse the Lape twice, are the most costly. The LINC tapes
are read at repular travel speed of 23 blocks per second,

In practice. the user is aware of frequent but brief tape
motions. Long delays are infrequent, due to a variety of in-
fluences that will be discussed.

Editing Efficiency

The absence of editing commands for the simple editing
functions of inserting and deleting reduces both typing time
and errors. These explicit activitics probably cannot be
further simplified. The response on the scope is always In-
stantaneous. Since the scroll is properly positioned this is
true even when the user edits across a boundary of the work-
ing section. A delayed response is possible in the editing
situation only if the playground fills up.

Playground Efficiency

Although the user is unaware of the playeround per se, he
may notice some extra tape motion if it fills up, depending
on how far the current scroll position is from the end of the
manuscript.” In most situations, however, the playground
never fills up, despite extensive editing, because of the com-
pensatory deleting effect.

For this reason the size of the playground when initially
created is not critical. Since delays due to a tull playground
are seldom incurred. increasing the size of the playground
does not significantly affect the general efficiency.

Reducing the size of the playground, however, will
eventually degrade performance. Although it is difficult to
determine a smallest tolerable size, the playground should
clearly not be smaller than a typical manuseript entry. ie.,
than the least number of characiers that might be inserted
before any are deleted. Preferably it should be a multiple of
that number. In LINC program preparation, for example, a
manuscript entry is an instruction line of typically ten

2 The Lap6 scroll is open ended only in one direction. Efficiency can be
somewhat improved by smoothing the scroll in either direction, whichever
distance is shorter, On the one-tape LAPG system, overall tape allocation is
mare cificient if one end of the scroll s fixed.

[[HE)

characters. Our experience with the 512-character play-
ground indicates that this multiple of about 50 times the
size of an entry is probably more generous than necessary.
When the data are mailing lists or bibliographies for which
a typical entry is about 100 characters, performance, al-
though poorer. is still generally acceptable to most users,
Acceptability, however, is undoubtedly influenced by the
fact that a full playground still requires no user action,
except waiting, in order to continue editing. For most
situations the author would not recommend using a play-
ground smaller than five times the size of a typical entry.

The worst-case situation regarding the playground occurs
when a number of characters is added, and none deleted,
near the beginning of a long manuscript. Since the play-
ground simply acts here as a fixed-size input text buffer,
efficiency is comparable to that of the deferred storage tech-
niques mentioned earlier. When the ADD MANUSCRIPT com-
mand is used, for example. to insert one manuscript in the
middle of another, the playground repeatedly fills up. Pro-
vision is made for the LaP6 user to break the scroll into
separate manuscripts, i.e., temporarily eliminate the con-
tinuation string, firsi.

Locating Efficiency

To reduce the delay involved in repositioning the scroll.
Lapa augments the algorithm of Fig. 5 to provide two posi-
tioning technigues. The first moves the characters through
the memory at about 1 second per block as deseribed, The
second uses a “scroll index™ to determine the number of the
seroll block containing the requested scroll position. It then
moves the tape, at 23 blocks per second. directly to the re-
quired block. A new playground is created at the destina-
tion. Although Lape uses a single index keyed to line num-
bers, indices can be keyed to any definable scroll positions
such as the manuscript’s internal alphanumeric order, its
“ags,” or section labels,

The second technigue is used whenever the first technique
will pot change the string sequence on the tape. This is the
case when there is no continuation string, or when no edi-
torial changes have been made since the working and con-
tinuation strings were last joined. The 23 to 1 saving is con-
siderable when the viewer is simply locating and reading, as,
for example, when first finding his place in the manuscript.

When a relatively slow tape 15 used to hold the scroll. it is
advantageous to create the playground. as is done here,
without disturbing the scroll sequence. If the playground is
physically embedded in the string. the two strings thus
separated always have to be rejoined. The user 15 penahzed
for “browsing,” and the automatic rejoining of the strings
described earlier must be based on scroll position alone.

The combination of techniques keeps the locating delays
from dominating the tape editing situation. If the user is
only reading. the faster technique is used automatically. If
he is editing, changing one character in the first block of a
30-block manuscript will cost him about 30 seconds when
LAPA Tejoins the two strings. On the other hand. if extensive
changes are made in the same manuscript, a process that

I[EEE TRANSACTIONS ON COMPUTERS, NOVEMBER 1970

may take him several hours, the sum of all the locating de-
lays will, i the locating pattern is sequential. still be only 30
seconds.

CONCLUSIONS

The efficiency of scroll editing 15 primarily influenced by
the transfer characteristics of the scroll device, rather than
by limitations inherent in the algorithm. Even with a rela-
tively slow device, however, the balance between the
amount of data that can be efficiently handled and the
amount of core memory required 15 excellent, Using a L1NG
tape, a ratio of total scroll size to transfer unit size of 45 to 1
is reasonably efficient. If this balance 1s preserved, the total
scroll area can be quadrupled. for example, without aflect-
ing significantly the efficiency. by making the working and
continuation sections in the memory each the equivalent of
four tape blocks instead of one. This is possible on some of
the larger memory LINCS now available.?

Surprisingly. perhaps. the concept of creating “‘some™
working space — a plaveround-—in the middle of a char-
acter string presents no special problems. The algorithm as
programmed uses about 700 LiNC instructions [20], includ-
ing the display, and the invesiment required specifically to
handle the playground itself is trivial. Nor is the efficiency
especially sensitive to the playground’s size. In practice the
algorithm has, if anything, performed better than antici-
pated.

Scroll editing has been in routine use by about 2000
people on all varieties of Lines since the summer of 1967,
The technigue has been found excellent for extensive editing
of long character strings, and the resulting manuscript
structure is simple and straightforward. As a result, it 15 used
for data preparation in a variety of applications including
the preparation of chemical formulas for molecular graph-
ics work, bibliographies for information retrieval systems,
flow charts, and a variety of programming languages.

The popularity of scroll editing is as much attributable to
its operational ease as to its efficiency. The simplification of
editing operations and the elimination of scroll maintenance
have minimized the user’s responsibility, and the editing
process itsell is direct, reliable, and unencumbered.

REF

[1] X L. Schwartz, “Outling programming,” Comm. ACM, vol. 9, pp.
199202, March 1966,

[2] 8. Carmody, W. Gross, T. H. Nelson, D. Rice, and A, van Dam, A
hypertext editing system for the 360, in Periinenr Concepis in Com-
puter Graphics, M. Faiman and |, Mievergell, Eds. Urbana, HL:
University of lllinois Press, 196%, pp. 291330,

[3] L. P. Deutsch and B. W. Lampson, “An online editor,” Cowsrr.
ACM, vol. 10, pp. 793-T99, December 1967,

[4] M. V. Mathews and 1. E. Miller, “Computer editing, typeselting, and
image generation,” 965 Fall Joint Comiputer Conf.. AFIPS Proc.,
vol. 27, pt. 1. Washington, [, C.: Spartan, 1965, pp. 389398,

[5] H. & Corhin and W. L. Frank, “Display oriented compuier usage
system," Proe. 285t Nar. Conf. ACMH. Washington, D, C.: Thomp-
son, 1966, pp. 515526,

[6] G. E. Roudabush, C. B. T. Bacon, B. B. Briges, I. A. Fierst, D. W,
Isner. and H, A, Moguni, "“The lefi hand of scholarship: Computer

EMCES

* The micro-vine 3, tive-8, and #oe-12 all have memorics expand-
able (o 32 000 words, but use the same tape.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 11, NOVEMBER (970

experiments with recorded text as a communication media,”™ f964
Fotf Soint Computer Conf., AFIPS Proc, vol. 27 pt. 1. Washinglon,
[, C.; Spartan, 1965, pp. 399-411,

[7] D. C. Engelbart and W. K. English, “A research center for augment-
ing human intellect,” 1968 Falf Joint Computer Conf., AFIPS Proc.,
vol. 33, pt. 1. Washington, D. C.: Thompson, 1968, pp. 395410,

[B] T.H. Kehland C, Moss, *Systems programming on-=line,” Compiters
anel Biomed, Res., vol. 1, pp. 550555, June 1968

[#] H. Bratman, H. G. Martin, and E. C. Perstein. “Program composi-
tion and editing with an on-line display,” 1968 Fall Joine Compuier
Conf., AFIPS Proc., vol. 33, pt. 2. Washington, D. C.: Thompson,
1968, pp. 13491360,

[10] B. Tolliver, *TYEDIT,” Stanford University, Palo Alio, Calif.,
Stanford Time-Sharing Memo. 32, March 19635,

[11] I. McCarthy, I3, Brian, G. Feldman. and 1. Allen, “THOR—A
display based time sharing system,” [967 Spring JSeint Compeeier
Conf., AFIPS Proc., vol. 30, Washington, [}, C.: Thompson, 1967,
pp- 523-633,

[12] M. A, Wilkes, LAP3 Users’ Mamual, Massachusetts Institute of
Technology, Cambridge, Mass.. Center Development Office Rept.,
August 1963,

[13] ,ULAPRS: vpine assembly program.” Proc. DECUS Spring

1005

Symp. Maynard, Mass.: Digital Equipment Corp., 1966, pp.
4350,

[14] W. A Clark and C. E, Maolnar, *A description of the Line,™ in Com-
putters in Biamedical Research, vol, 2, R, W Stacy and B, Waxman,
Eds. Mew York: Academic Press, 1965, pp. 35-66,

[15] B. L. Best and T. C. Stockebrand, A compuler-inlegrated rapid-
access magnetic tape system with fixed address,” 1958 Proc. Western
Joine Computer Conf. New York: American Institute of Elecirical
Engineers, 1939, pp. 4246,

[16] T. Kilburn, B. B. Payne, and . 1. Howarth, “The Atlas supervisor.™
in Computers: A Key to Total Systems Contral, 1961 Eastern Joint
Compuier Conf.. AFIPS Prac,, vol. 20 New York: Macmillan,
1961, pp. 279-294.

[17] M, A, Wilkes. “Conversational access to a 248-word machine,”
Camt, ACM, vol. 13, pp. 407414, July 1970

[18] CLAPG Handbook, Computer Rescarch Laboratory, Wash-
ington University, St. Louis, Mo., Tech. Rept. 2. May 1967,
[14] . LAPs Use af the Stucki-Ornstein Text Editing Algarithm,

Computer Systems Laboratory, Washington University, 81 Louis,
Ma., Tech. Rept. 18, February 1971,

[20] . LAPG Manuserips Listings. Computer Systems Laboratory,
Washington Universily. St Louis, Mo., May %67,

Reprivited from TEEE TRANSACTIONS
ON COMPUTERS
Volume C-19, Number 11, Movember, 1970
pp. 10091015

COPYRIGHT £ 1970

Tue INSTITUTE OF BELECTRICAL AND ELECTRONICS ERGINEERS, INC,

PRINTED IN THE L5 A.

